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Motivation

Most natural problems in algorithmic graph theory are
NP-complete.

Want to find restricted classes of graphs where we can solve some
problems in polynomial time.

Best if we can find classes where lots of problems can be solved in
polynomial time.
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Why Clique-width?
Theorem (Courcelle, Makowsky and Rotics 2000,
Kobler and Rotics 2003, Rao 2007, Oum 2008, Grohe and
Schweitzer 2015)

Any problem expressible in “monadic second-order logic with
quantification over vertices” (and certain other classes of problems)
can be solved in polynomial time on graphs of bounded
clique-width.

This includes:

I Vertex Colouring
I Maximum Independent Set
I Minimum Dominating Set
I Hamilton Path/Cycle
I Partitioning into Perfect Graphs
I Graph Isomorphism
I . . .



Clique-width
The clique-width is the minimum number of labels needed to
construct G by using the following four operations:

(i) creating a new graph consisting of a single vertex v with
label i (represented by i(v))

(ii) taking the disjoint union of two labelled graphs G1 and G2
(represented by G1 ⊕ G2)

(iii) joining each vertex with label i to each vertex with label j
(i 6= j) (represented by ηi ,j)

(iv) renaming label i to j (represented by ρi→j)

For example, P4 has clique-width 3.

An expression for a graph can be represented by a rooted tree.
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Calculating clique-width

Theorem (Fellows, Rosamond, Rotics, Szeider 2009)

Calculating clique-width is NP-hard.

Theorem (Corneil, Habib, Lanlignel, Reed, Rotics 2012)

Can detect graphs of clique-width at most 3 in polynomial time.

It’s not known if this is also the case for graphs of clique-width 4.

Theorem (Oum 2008)

Can find a c-expression for a graph G where c ≤ 8cw(G) − 1 in
cubic time.

The clique-width of all graphs up to 10 vertices has been calculated
(Heule & Szeider 2013).



Why clique-width?

I “Equivalent” to rank-width and NLC-width
I Generalises tree-width
I “Equivalent” to tree-width on graphs of bounded degree

The following operations don’t change the clique-width by “too
much”

I Complementation
I Bipartite complementation
I Vertex deletion
I Edge subdivision (for graphs of bounded-degree)

Need only look at graphs that are

I prime
I 2-connected
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Aim

Underlying Research Question

What kinds of graph properties ensure bounded clique-width?

By knowing what the bounded cases are, we may be able to reduce
other classes down to known cases and get polynomial algorithms.
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Hereditary Classes
A graph H is an induced subgraph of G if H can be obtained by
deleting vertices of G , written H ⊆i G .

P4 3P1 P1 + P2

So P1 + P2 ⊆i P4, but 3P1 6⊆i P4.

A class of graphs is hereditary if it is closed under taking induced
subgraphs.

Let S be a set of graphs. The class of S-free graphs is the set of
graphs that do not contain any graph in S as an induced subgraph.

For example: bipartite graphs are the (C3,C5,C7, . . .)-free graphs

We will consider classes defined by finite set of forbidden induced
subgraphs.
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Graphs of large clique-width
Theorem (General Construction)
For m ≥ 0 and n > m + 1 the clique-width of a graph G is at least
b n−1
m+1c+ 1 if V (G ) has a partition into sets Vi ,j(i , j ∈ {0, . . . , n})

with the following properties:
I |Vi ,0| ≤ 1 for all i ≥ 1.

I |V0,j | ≤ 1 for all j ≥ 1.

I |Vi ,j | ≥ 1 for all i , j ≥ 1.

I G [∪nj=0Vi ,j ] is connected for all i ≥ 1.

I G [∪ni=0Vi ,j ] is connected for all j ≥ 1.

I For i , j , k ≥ 1, if a vertex of Vk,0 is adjacent to a vertex of Vi ,j

then i ≤ k .

I For i , j , k ≥ 1, if a vertex of V0,k is adjacent to a vertex of Vi ,j

then j ≤ k .

I For i , j , k, ` ≥ 1, if a vertex of Vi ,j is adjacent to a vertex of
Vk,` then |k − i | ≤ m and |`− j | ≤ m.





Graphs of large clique-width

Example:

Walls are bipartite and have unbounded clique-width, even if we
subdivide each edge k times.



Graphs of large clique-width

Walls are bipartite and have unbounded clique-width, even if we
subdivide each edge k times.

C4 I4

If H contains a Ck or Ik , then the k-subdivided walls are H-free.



Which classes have bounded clique-width?

If the class of H-free graphs has bounded clique-width then H must
contain no cycles and no Ik .

Every component of H must be a subdivided claw, path or isolated
vertex. The set of such graphs is called S.

S1,2,3

P5

P1



H-free graphs

Theorem (D., Paulusma 2015)

The class of H-free graphs has bounded clique-width if and only if
H ⊆i P4.



Colouring H-free graphs

Theorem (Král’, Kratochvíl, Tuza & Woeginger, 2001)

The Vertex Colouring problem is polynomial-time solvable for
H-free graphs if and only if H ⊆i P1 + P3 or P4, otherwise it is
NP-complete.

P1 + P3 P4



Colouring (H1,H2)-free graphs
The Vertex Colouring problem is polynomial-time solvable for
(H1,H2)-free graphs if
1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i K1,3, and H2 ⊆i C
++
3 , H2 ⊆i C

∗
3 or H2 ⊆i P5

3. H1 6= K1,5 is a forest on at most six vertices or
H1 = K1,3 + 3P1, and H2 ⊆i P1 + P3

4. H1 ⊆i sP2 or H1 ⊆i sP1 +P5 for s ≥ 1, and H2 = Kt for t ≥ 4
5. H1 ⊆i sP2 or H1 ⊆i sP1 + P5 for s ≥ 1, and H2 ⊆i P1 + P3

6. H1 ⊆i P1 + P4 or H1 ⊆i P5, and H2 ⊆i P1 + P4

7. H1 ⊆i P1 + P4 or H1 ⊆i P5, and H2 ⊆i P5

8. H1 ⊆i 2P1 + P2, and H2 ⊆i 2P1 + P3 or H2 ⊆i P2 + P3

9. H1 ⊆i 2P1 + P2, and H2 ⊆i 2P1 + P3 or H2 ⊆i P2 + P3

10. H1 ⊆i sP1 + P2 for s ≥ 0 or H1 = P5, and H2 ⊆i tP1 + P2 for
t ≥ 0

11. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3

12. H1 ⊆i P5, and H2 ⊆i C4 or H2 ⊆i 2P1 + P3.



Colouring (H1,H2)-free graphs
The Vertex Colouring problem is polynomial-time solvable for
(H1,H2)-free graphs if
1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i K1,3, and H2 ⊆i C
++
3 , H2 ⊆i C

∗
3 or H2 ⊆i P5
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The class of (H1,H2)-free graphs has bounded clique-width if:
1. H1 or H2 ⊆i P4;

2. H1 = sP1 and H2 = Kt for some s, t;

3. H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + S1,1,2,
P6 or S1,1,3;

4. H1 ⊆i 2P1 + P2 and H2 ⊆i 2P1 + P3, 3P1 + P2 or P2 + P3;

5. H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;

6. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;

7. H1,H2 ⊆i K1,3.

and it has unbounded clique-width if:
1. H1 6∈ S and H2 6∈ S;
2. H1 /∈ S and H2 6∈ S;
3. H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;

4. H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
5. H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;

6. H1 ⊇i 4P1 and H2 ⊇iP1 + P4 or 3P1 + P2.



Theorem (D., Paulusma 2015)

This leaves 13 cases where it is unknown if the clique-width of
(H1,H2)-free graphs is bounded or not (up to some equivalence
relation).

1. H1 = 3P1,H2 ∈ {P1 + P2 + P3,P1 + 2P2,P1 + P5,
P1 + S1,1,3,P2 + P4, S1,2,2,S1,2,3};

2. H1 = 2P1 + P2,H2 ∈{P1 + P2 + P3,P1 + 2P2,P1 + P5};

3. H1 = P1 + P4,H2 ∈ {P1 + 2P2,P2 + P3} or

4. H1 = H2 = 2P1 + P3.

There are 15 classes of (H1,H2)-free graphs for which both
boundedness of clique-width and computational complexity of
vertex colouring are open.



(K3,K1,3 + 2P1)-free graphs have bounded clique-width

K3 K1,3 + 2P1

Proof.
I Pick a vertex x . If it has degree < 3, delete it and its

neighbourhood. Remainder of the graph is
(K3,K1,3 + P1)-free. Clique-width is bounded.

I Let N1 be the neighbourhood of x . It is an independent set.
Let N2 = V (G ) \ (N1 ∪ {x}).

I If N2 is complete bipartite (or independent), deleting x makes
G bipartite, so clique-width is bounded.
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K3 K1,3 + 2P1

I Fix x1, x2, x3 ∈ N1.

I Given y1, y2, y3 ∈ N2, at least one yi must be adjacent to at
least one xj .

I Delete at most two vertices from N2. Every vertex of N2 has a
neighbour in {x1, x2, x3}
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K3 K1,3 + 2P1
I Partition N2 as follows: A set of vertices adjacent to x1, B set

of vertices adjacent to x2, but not x1, C set of vertices
adjacent to x3, but not x1 or x2.

I A,B,C are independent
I If |C | ≥ 3 get a K1,3 + 2P1. May assume C is empty.
I Assume |A|, |B| ≥ 9, otherwise can delete them and make N2

independent.
I If a1, a2, a3 ∈ A and b1, b2 ∈ B then some ai is adjacent to a

bj
I If a ∈ A has three neighbours in B then it is complete to B

(and vice versa)
I This makes A complete to B .
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H-free Bipartite Graphs

Theorem (D., Paulusma 2014)

The class of H-free bipartite graphs has bounded clique-width if
and only if H is an induced subgraph one of:

K1,3 + 3P1

K1,3 + P2

P1 + S1,1,3

S1,2,3

sP1 for some s
(s = 5 shown)



H-free Split Graphs

F4 F5

Theorem (Brandstädt, D., Huang, Paulusma, 2015)
Let H be a graph such that neither H nor H is in {F4,F5}. The
class of H-free split graphs has bounded clique-width if and only if
H or H is

I isomorphic to rP1 for some r ≥ 1 or
I an induced subgraph of one of:

K1,3 + 2P1 F1 F2 F3 bull+P1 Q



H-free Weakly Chordal Graphs

Theorem (Brandstädt, D., Huang, Paulusma 2015)
Let H be a graph. Then the class of H-free weakly chordal graphs
has bounded clique-width if and only if H ⊆i P4.



H-free Chordal Graphs

F1 F2

Theorem (Brandstädt, D., Huang, Paulusma 2015)
Let H be a graph with H /∈ {F1,F2}. The class of H-free chordal
graphs has bounded clique-width if and only if H is a an induced
subgraph of one of:

S1,1,2 K1,3 + 2P1 P1 + P1 + P3 P1 + 2P1 + P2

bull Kr for r = 5 P1 + P4 P1 + P4



Other Containment Relations

Theorem (D., Paulusma 2015)

Let {H1, . . . ,Hp} be a finite set of graphs. Then the following
statements hold:

(i) The class of (H1, . . . ,Hp)-subgraph-free graphs has bounded
clique-width if and only if Hi ∈ S for some 1 ≤ i ≤ p.

(ii) The class of (H1, . . . ,Hp)-minor-free graphs has bounded
clique-width if and only if Hi is planar for some 1 ≤ i ≤ p.

(iii) The class of (H1, . . . ,Hp)-topological-minor-free graphs has
bounded clique-width if and only if Hi is planar and has
maximum degree at most 3 for some 1 ≤ i ≤ p.



Summary of Open Problems

For which pairs of graphs (H1,H2) does the class of (H1,H2)-free
graphs have bounded clique-width? (13 open cases: see also
“Clique-width of Graph Classes Defined by Two Forbidden Induced
Subgraphs” D. & Paulusma, CIAC 2015 and arXiv:1405.7092.)

For which graphs H does the class of H-free chordal graphs have
bounded clique-width? (2 open cases: see also “Bounding the
Clique-Width of H-free Chordal Graphs” Brandstädt, D., Huang,
Paulusma, MFCS 2015 and arXiv:1502.06948.)

For which graphs H does the class of H-free split graphs have
bounded clique-width? (2 open cases: see also “Bounding the
Clique-Width of H-free Split Graphs” Brandstädt, D., Huang,
Paulusma, Eurocomb 2015)
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Thank You!


